CHAPTER 2 Block

- Can Li @ 12#503A
- lic@jsnu.edu.cn
- https://sslic.cn/speci_eng

Unit 4 Manual Block

- Basic Principle
- **Controlled Manual Block**
- Interlocked Manual Block

- In a manual block system the clearance of block sections has to be checked by local operators by watching the rear end train markers.
 - The block signals are operated manually.
 - ◆ The block information is transmitted by means of telecommunications, in its most simple form by telephone (telephone block).
 - Fig.4.1 shows a typical example of a manual block system that works with telephone messages.

 Fig.4.1 shows a typical example of a manual block system that works with telephone messages.

Fig. 4. 1 Example of a telephone block system

Single track lines

- ◆ On single track lines, a train which is going to leave a station has to be offered to the next station where the train sequence may be changed.
- ◆ This receiving station can be a junction or a station with passing tracks.
- ◆ After this receiving station has accepted the train, all intermediate block sections will be reserved for this train.
- ◆ When the train has departed, the time of departure is transmitted to the receiving station and also to all intermediate block stations.
- ◆ After the train has cleared a block section and is protected by a stop signal, a clearance message is being sent to the block section in rear.

Double track lines

◆ On double track lines where a current of traffic is in effect, offering and accepting of trains are only required for movements against the current of traffic.

- All train movements and train messages are recorded by the station operators in a hand written train record. This is a tabular sheet in which every train movement is recorded with the following data:
 - ◆ At the departure station
 - The train description.
 - The time of the train has been accepted from the receiving station.
 - The departure time.
 - The time of the clearance message station has <u>been</u> received from the next block station.

 The time of the clearance message (that departure) station has received from the next block station.
 - At an intermediate block station.
 - The train description.
 - The time of the train has departed from the departure station.
 - The time of the train has passed the block station.
 - The time of the clearance message (of block) station has been sent to the block station in rear.
 - The time of the clearance message (that current) station has received from the next block station.

- All train movements and train messages are recorded by the station operators in a hand written train record. This is a tabular sheet in which every train movement is recorded with the following data:
 - At the departure station
 - The train description.
 - The time of the train has been accepted from the receiving station.
 - The departure time.
 - The time of the clearance message station has been received from the next block station.
 - At the receiving station.
 - The train description.
 - The time of the train has departed from the departure station.
 - The arrival time.
 - The time of the clearance message (of receiving) station has been sent to the block station in rear.

- With little modification on the different railways, this kind of a telephone block system is typical for European operating procedures, where train movements are authorized by local operators.
- On North American lines, where the traffic is always regulated by a dispatcher who issues the movement authorities, train messages for accepting trains between stations where the train sequence may be changed, are not required.
 - ◆ There, train messages are only exchanged between adjacent block stations.
- Instead of telephone messages, some railways use special block instruments to indicate the state of the line by lamps or movable signs.
 - It helps to reduce the probability of human errors in comparison to telephone communication.
 - Such block instruments are typical for railways which follow British operating procedures.

4.2 Controlled Manual Block

- To eliminate the risk of accident which may cause by human error in a manual block system, some North American railways introduced controlled manual block systems.
 - ◆ In controlled manual block system the signals are still operated manually but are controlled by continuous track circuits, requiring cooperation between the operators of adjacent block stations.
 - ◆ A signal cannot be cleared when the block section is occupied by a train or when the operator at the adjacent block section has cleared a signal for an opposing movement.
 - Checking the train integrity by watching the rear end train markers is not necessary.
- Instead of this principle of a safe manual block system, European railways prefer an interlocked manual block as described below.

- An interlocked manual block system follows the "block and lock" principle. That's why it is also called a "block and lock" system.
 - ◆ The block instruments are interlocked with the signals in a block apparatus.
 - ◆ After a train has entered the block section, the signal is locked by a block instrument in stop position, thus preventing the operator from clearing the signal again until he has received the clearance information from the operator of the next signal (Fig.4.2).
 - After a signal has been reset to stop position it is immediately automatically locked by a rotation locking device.
 - This device prevents clearing the signal again if the electric block instrument fails.
 - The rotation lock will only release after the block instrument has worked properly.
 - ◆ The train has electrically "block in". A continuous track clear detection for the block section is not required.

Fig. 4. 2 Protecting following movements in the German interlocked block system

- ◆ After the train has cleared the block section and is protected by a stop signal, the operator may "block out" the train by operating a release button that will unlock the signal at the block station in rear.
- ◆ The release button is connected to an electrical lock that prevents to block out the train until it has passed a short track circuit at the exit of the block section.
- ◆ Thus, a signal cannot be unlocked before the train has passed the next block station, but the train integrity has still to be checked by watching the rear end marker.
- ◆ This kind of an interlocked block system has been widely adopted by railways which follow German operating procedures.

 [_æpəˈreɪtəs]
- ◆ A very common type of block apparatus that is used in an interlocked manual block is the German "Blockfeld" and its further developments in relay logic.

■ The block and lock principle is also used for opposite locking on single track lines.

Fig. 4. 3 Opposite locking in the German Interlocked Block System

- The principle of an interlocked block system cannot be used on track sections inside of home signal or yard limits where trains may terminate or change their direction.
 - In such cases a train can leave the section without passing the next signal. Thus, the locking of the home signal that has governed the train into the section would never release.
 - ◆ Train separation in such sections can only be ensured by line clear detection.
 - ◆ That is the technical reason why on railways where a block system always means an interlocked block system (especially typical for railways which follow German operating procedures), these track sections are usually not regarded as block sections.

Homework

- Page 35
 - 1
 - **•** 2
 - **3**: (1)
 - **4**: (1), (2)